@@ -531,13 +531,13 @@ def _fit_ci(x, y, xhat, fitlogs=None, niter=10000, alpha=0.05):
531531 return yhat_lo , yhat_hi
532532
533533
534- def _estimate_from_fit (xdata , slope , intercept , xlog = False , ylog = False ):
534+ def _estimate_from_fit (xhat , slope , intercept , xlog = False , ylog = False ):
535535 """ Estimate the dependent variables of a linear fit given x-data
536536 and linear parameters.
537537
538538 Parameters
539539 ----------
540- xdata : numpy array or pandas Series/DataFrame
540+ xhat : numpy array or pandas Series/DataFrame
541541 The input independent variable of the fit
542542 slope : float
543543 Slope of the best-fit line
@@ -549,23 +549,23 @@ def _estimate_from_fit(xdata, slope, intercept, xlog=False, ylog=False):
549549
550550 Returns
551551 -------
552- yhat : same type as xdata
552+ yhat : numpy array
553553 Estimate of the dependent variable.
554554
555555 """
556556
557- x = numpy .array ( xdata )
557+ xhat = numpy .asarray ( xhat )
558558 if ylog :
559559 if xlog :
560- yhat = numpy .exp (intercept ) * x ** slope
560+ yhat = numpy .exp (intercept ) * xhat ** slope
561561 else :
562- yhat = numpy .exp (intercept ) * numpy .exp (slope ) ** x
562+ yhat = numpy .exp (intercept ) * numpy .exp (slope ) ** xhat
563563
564564 else :
565565 if xlog :
566- yhat = slope * numpy .log (x ) + intercept
566+ yhat = slope * numpy .log (xhat ) + intercept
567567
568568 else :
569- yhat = slope * x + intercept
569+ yhat = slope * xhat + intercept
570570
571571 return yhat
0 commit comments