Skip to content

Misc. bug: "--parallel 1" initializes 4 slots, while docs say default is 1 #17989

@IIIIIllllIIIIIlllll

Description

@IIIIIllllIIIIIlllll

Name and Version

/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
Device 0: AMD Radeon Graphics, gfx1151 (0x1151), VMM: no, Wave Size: 32
version: 0 (unknown)
built with GNU 15.2.0 for Linux x86_64

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

llama-server

Command line

./llama-server -m /home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf -c 8192 --port 9000 -np 1

./llama-server -m /home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf -c 8192 --port 9000 -np 2

./llama-server -m /home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf -c 8192 --port 9000 -np 3

Problem description & steps to reproduce

When starting llama-server , the documentation in README.md states that:

  • -np, --parallel N — number of parallel sequences to decode (default: 1)

However, in practice I am seeing 4 slots being initialized even when I explicitly set --parallel 1 . When I set --parallel 2 , the number of slots is correctly initialized to 2. This looks like either a bug or an inconsistency between the implementation and the documentation.

First Bad Commit

Sorry, no.

Relevant log output

mark@MarkPC:~/llama.cpp/llama.cpp-master$ ./llama-server -m /home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf -c 8192 --port 9000 -np 1
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
  Device 0: AMD Radeon Graphics, gfx1151 (0x1151), VMM: no, Wave Size: 32
main: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)
build: 0 (unknown) with GNU 15.2.0 for Linux x86_64
system info: n_threads = 16, n_threads_batch = 16, total_threads = 32

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

init: using 31 threads for HTTP server
start: binding port with default address family
main: loading model
srv    load_model: loading model '/home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf'
llama_model_load_from_file_impl: using device ROCm0 (AMD Radeon Graphics) (0000:c6:00.0) - 31471 MiB free
llama_model_loader: loaded meta data with 28 key-value pairs and 310 tensors from /home/mark/Models/Q8/Qwen3-0.6B-Q8_0/Qwen3-0.6B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3 0.6B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen3
llama_model_loader: - kv   5:                         general.size_label str              = 0.6B
llama_model_loader: - kv   6:                          qwen3.block_count u32              = 28
llama_model_loader: - kv   7:                       qwen3.context_length u32              = 40960
llama_model_loader: - kv   8:                     qwen3.embedding_length u32              = 1024
llama_model_loader: - kv   9:                  qwen3.feed_forward_length u32              = 3072
llama_model_loader: - kv  10:                 qwen3.attention.head_count u32              = 16
llama_model_loader: - kv  11:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  12:                       qwen3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  15:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  16:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  17:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  18:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  19:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  20:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  21:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  22:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  23:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  24:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  25:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  26:               general.quantization_version u32              = 2
llama_model_loader: - kv  27:                          general.file_type u32              = 7
llama_model_loader: - type  f32:  113 tensors
llama_model_loader: - type q8_0:  197 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 604.15 MiB (8.50 BPW) 
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 40960
print_info: n_embd           = 1024
print_info: n_embd_inp       = 1024
print_info: n_layer          = 28
print_info: n_head           = 16
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 2
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 3072
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: n_expert_groups  = 0
print_info: n_group_used     = 0
print_info: causal attn      = 1
print_info: pooling type     = -1
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 40960
print_info: rope_yarn_log_mul= 0.0000
print_info: rope_finetuned   = unknown
print_info: model type       = 0.6B
print_info: model params     = 596.05 M
print_info: general.name     = Qwen3 0.6B Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors:   CPU_Mapped model buffer size =   157.65 MiB
load_tensors:        ROCm0 model buffer size =   604.15 MiB
.............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 4
llama_context: n_ctx         = 8192
llama_context: n_ctx_seq     = 8192
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = true
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_seq (8192) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context:  ROCm_Host  output buffer size =     2.32 MiB
llama_kv_cache:      ROCm0 KV buffer size =   896.00 MiB
llama_kv_cache: size =  896.00 MiB (  8192 cells,  28 layers,  4/1 seqs), K (f16):  448.00 MiB, V (f16):  448.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:      ROCm0 compute buffer size =   298.75 MiB
llama_context:  ROCm_Host compute buffer size =    18.01 MiB
llama_context: graph nodes  = 987
llama_context: graph splits = 2
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 8192
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 4
slot         init: id  0 | task -1 | new slot, n_ctx = 8192
slot         init: id  1 | task -1 | new slot, n_ctx = 8192
slot         init: id  2 | task -1 | new slot, n_ctx = 8192
slot         init: id  3 | task -1 | new slot, n_ctx = 8192
srv          init: prompt cache is enabled, size limit: 8192 MiB
srv          init: use `--cache-ram 0` to disable the prompt cache
srv          init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
srv          init: thinking = 1
init: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {{- messages[0].content + '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for index in range(ns.last_query_index, -1, -1) %}
    {%- set message = messages[index] %}
    {%- if ns.multi_step_tool and message.role == "user" and not('<tool_response>' in message.content and '</tool_response>' in message.content) %}
        {%- set ns.multi_step_tool = false %}
        {%- set ns.last_query_index = index %}
    {%- endif %}
{%- endfor %}
{%- for message in messages %}
    {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
        {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
    {%- elif message.role == "assistant" %}
        {%- set content = message.content %}
        {%- set reasoning_content = '' %}
        {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
            {%- set reasoning_content = message.reasoning_content %}
        {%- else %}
            {%- if '</think>' in message.content %}
                {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
                {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
            {%- endif %}
        {%- endif %}
        {%- if loop.index0 > ns.last_query_index %}
            {%- if loop.last or (not loop.last and reasoning_content) %}
                {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
            {%- else %}
                {{- '<|im_start|>' + message.role + '\n' + content }}
            {%- endif %}
        {%- else %}
            {{- '<|im_start|>' + message.role + '\n' + content }}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {{- message.content }}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
    {%- if enable_thinking is defined and enable_thinking is false %}
        {{- '<think>\n\n</think>\n\n' }}
    {%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: model loaded
main: server is listening on http://127.0.0.1:9000
main: starting the main loop...
srv  update_slots: all slots are idle

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions